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ABSTRACT

The Region of Interest (ROI) detection stage of an Automatic Target Recognition (ATR) System serves
the crucial role of identifying candidate regions which may have potential targets. The large variability
in clutter (noise or countermeasures which provide target like characteristics) complicate the task of
developing accurate ROI determination algorithms.

Presented in this paper is a new paradigm for ROI determination based on the premise that disjoint
local approximation of the regions of a SAR image can provide discriminatory information for clutter
identification. Specifically, regions containing targets are more likely to require complex approximators
(i.e. ones with more free parameters or a higher model order).

We show preliminary simulations results with two different approximators (sigmoidal multi-layered
neural networks with lateral connections, and radial basis function neural networks with a model
selection criterion), both of which attempt to produce a smooth approximation of disjoint local patches
of the SAR image with as few parameters as possible. Those patches of the image which require a
higher model order are then labeled as ROIs. Our preliminary results show that sigmoidal networks
provide a more consistent estimate of the model order than their radial basis function counterparts.
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1. INTRODUCTION

Automatic Target Recognition (ATR) in its simple form consists of the three steps shown below:

1. Region of Interest (ROI) or focus of attention determination.
2. Extraction of features from the regions identified in Step 1 above.

3. Classification of the object (if any) in the ROI based on the features extracted in Step 2 above.
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When information from multiple sensors is available, one can form a single data stream on which
the above three steps can be applied. This could be termed as data level fusion. Alternatively, each of
the three steps may be independently applied to each data stream followed by a categorization which
is negotiated between the categorization obtained from each data stream (decision level fusion). Time
varying information (motion provides a clue as to the functionality of the observed) can also provide
discriminatory information.

Irrespective of the suite of sensors used, ROI determination is an important step in any ATR system.
When the ROI determination stage produces a high rate of false alarms (ROIs which are discovered
by later recognition stage algorithms to contain only clutter) a significant amount of time is wasted.
The ROI determination stage thus has to reduce the false alarm rate while ensuring that regions with
targets in them are not missed.

Within the context of Synthetic Aperture Radar (SAR) images, there have been a number of
approaches proposed for ROI determination. When the clutter characteristics are stationary and
Gaussian, the so called Constant False Alarm Rate (CFAR) filter, which uses the pixel intensity relative
to the local mean can be used (see! for modifications in the non-Gaussian case). Various filters (such as
the whitening filter,? or BCS/FCS?) can be used to enhance the contrast prior to CFAR application.
Multi-parameter CFAR may also be used.* A macro Gabor filter composed of a set of real Gabor
functions has also been proposed.®

The region of interest selection can itself utilize Steps 2 and 3 outlined above. Thus features may
be extracted (say from disjoint squares) and a classifier constructed to label a square as ’interesting’
or otherwise. For example,® a feed-forward neural network trained using back-propagation” is used to
obtain ROIs. Inputs to this network are derived from Gabor filters. A similar approach reported uses
radial basis function neural networks operating on the wavelet decomposition of an image to obtain
regions of interest.®

A disadvantage of any supervised ROI determination scheme is that its performance is directly
influenced by the amount and quality of data that was used in training it. Due to the large variability
of clutter characteristics it may be very difficult to arrive at a training data set which captures this
variability. Consequently, adaptive clutter characterization approaches have also been proposed. These
approaches assume that there will always be a large amount of clutter available in a SAR image and
hence adaptive characterization is possible. For example, a Gibbs distribution model can be constructed
towards approximating the joint pdf of pixels.” Such a pdf can be used in Bayesian inference to
ascertain if an image region is consistent with the pdf or deviates from it. In related approaches,
clutter is characterized based on statistical pattern recognition techniques.'®

Other approaches include unsupervised methods based on vector quantization (with the number
of clusters decided @ priori) to obtain regions of interest.® Due to the difficulty in a priori deciding
the number of clusters, the authors also report results using a topology representing network proposed

by‘ll

This paper provides a novel approach to isolating regions of interest in SAR images. Our approach
is based on function approximation, and unlike previous approaches, does not require the presence
of a good training data set. Specifically, we obtain the lowest order model that can approximate the
return in disjoint squares of a SAR image. Those disjoint squares that require a higher model order
approximator (i.e. one with more free parameters) are then labeled as regions of interest. Towards
obtaining the lowest model order approximation of disjoint squares in a SAR image, we use two different
approximators. The first of these is a sigmoidal multi-layered feed-forward neural network with selected
lateral connections amongst the hidden layer neurons.!?”1* The second of these is a radial basis function



Figure 1. Lateral connections in a feed-forward architecture. Inputs and hidden layer neurons are
fully connected as are hidden layer and output layer neurons. Neuron j in the hidden layer also receives
the net input of neuron (j — 1) in the hidden layer through a lateral connection



The adjustment of the weights are done to minimize the sum of squared error between the output
y: and the desired output (¥, ie. J =377 _, J*, where:
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To obtain the learning algorithm, we use gradient descent to minimize J#. For the hidden to the
output layer weights, we obtain:
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where, 6! = (¢! — y!') f'(s!'), and 7 is a constant (forward learning rate).

The weight update equations for the lateral weights are:

B

aJ* =
quj—l = _77q aq 1 = 77q [é; ‘I’ ( Z ég H Qa,a—l)] h;—l (4)
Jsd—

B=j+1  a=j+l

where, ¢ = (Zle 6?Wijf’(h;)), and 7, is a constant (lateral learning rate). The update equations
for the input to the hidden layer weights are similar to the above:
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Further details on these weight update equations are available in.!?

It has been proved!®'* that if the forward weights are initialized to be equal, and the lateral weights
are initialized to be equal, then update of the weights using equations (3)—(5) leads at convergence to
the following: hidden neurons 1 through ¢ differentiate, neurons ¢t through 7' behave identically, and
neurons 7' through m differentiate (¢t < T < m). Consequently, the model order at convergence is

reflected by (t +m —T).

2.2. RADIAL BASIS FUNCTION NETWORK

Radial basis function networks'®16 are architecturally similar in topology to the standard feed-forward
neural networks, i.e. they consist of an input layer which has n inputs, a hidden layer of m neurons
with Gaussian (or multi-quadric) basis functions, and a layer of output neurons. In what follows, we

use the notation that was introduced in the previous sub-section. The output of the network is then,
it =Y Wiz (6)

where, z¥ is the output of the j*" basis function which assuming is Gaussian can be written as,

J
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where w; is the center of the Gaussian and o; reflects the spread of the Gaussian.



Once again, we can define a sum of squared error as in equation (2) and resort to gradient descent
to minimize the sum of squared errors. To avoid gradient descent, one can fix the centers and the
spreads of the Gaussians resulting in a linearly parameterized network for which the output-hidden
weights can be found using the Moore-Penrose inverse. For example, if Y, denotes all the desired
outputs, and H,y,, denotes the response of the basis functions, then the output-hidden weights W,
can be obtained with,

W = (HTH)'HTY (8)

Rather than a-priori specifying the number m of basis functions to use, one can incrementally add
the basis functions relying on a model selection criterion (such as generalized cross-validation (GCV)
or the Bayesian Information Criterion (BIC)) to provide the stopping condition. In this paper, we stop
the addition of basis function at the point that BIC stops decreasing. The number of basis functions
used are then indicative of the model order that we seek.

3. SIMULATION RESULTS

We present preliminary simulations here based on an image in the MSTAR (PUBLIC) CLUTTER
CD-ROM.'®  The clutter CD-ROMs contain ground clutter imagery collected in the X-band at 1-
foot resolution in stripmap mode at 15-degree depression angles. Since these images are very large
(approximately 1784x1476), for this simulation, we isolated a 256x256 block starting from the top left
corner of the image identified as HB06172 on the CD-ROM. The raw clutter image is shown in Figure
2, and the model order as determined by the two methods is shown in Figure 3. For the multi-layered
sigmoidal feed-forward neural network we used, 2 inputs (2 and y coordinates), 15 sigmoidal hidden
neurons (and hence 14 lateral weights), and 1 sigmoidal output (magnitude of the return at (x,y)). The
forward weights were initialized to 0.1, and the lateral weights were initialized to 0.01. The forward
learning rate (1) w as 0.3, and the lateral learning rate (7,) was 0.1. For the radial basis function
network case, we also used 2 inputs (2 and y coordinates) and 1 output neuron (magnitude of the
return at («,y)). The addition of neurons was stopped at the minima of BIC. From the results it may
be seen that the sigmoidal network provide a more consistent estimate of the model order than does
the radial basis function network. We suspect that this is primarily due to the local nature of radial
basis function networks. Further, the low model order (targets typically give us a model order of 10
or higher) as obtained by the sigmoidal network indicates the lack of a target in the image which is
consistent with the fact that this image is a ground clutter image.

Figure 2. SAR clutter image



Figure 3. Model order for 8x8 blocks as determined by multi-layered sigmoidal feed-forward neural
networks with lateral connections (top), and radial basis function network that optimize a model
selection criterion (bottom)

4. CONCLUSIONS

In this paper we showed that the use of the model order of an approximator can serve as a valuable
discriminatory tool in ROI determination. In particular, the sigmoidal multi-layered feed-forward
neural networks seem to provide a consistent estimate of the model order. Though accurate, such
determination the model order for each disjoint square is a time consuming process. In our future work,
we seek to combine the speed of CFAR based approaches by evaluating CFAR labeled ROIs with the
sigmoidal model order based approach proposed herein, when the underlying data distribution disagrees
with that assumed in the CFAR model. This we anticipate will provide fast ROI determination without
sacrificing the accuracy that the model order based approach seems to provide.

ACKNOWLEDGMENTS

RK gratefully acknowledges the support of AFOSR though the Summer Faculty Research Program.
The opinions expressed are those of the authors.

REFERENCES

1. G. B. Goldstein, ”False Alarm Regulation in Log Normal and Weibull Clutter,” IEEE Transactions on
Aerospace and Flectronic Systems, Vol. 9, pp. 84-92, 1973.

2. L. M. Novak, and M. C. Burl, ”Optimal Speckle Reduction in Polarimetric Sar Imagery,” IEEFE Transactions
on Aerospace and Electronic Systems, Vol. 26, pp. 293-305, 1990.



10.

11.

12.

13.

14.

15.

16.

17.

18.

S. Grossberg, and E. Mingolla, ” Neural Dynamics of Surface Perception: Boundary Webs, Illuminants, and
Shape from Shading,” Computer Vision, Graphics, and Image Processing, Vol. 37, pp. 116-165, 1987.

A. M. Waxman et al., ”Neural Processing of SAR Imagery for Enhanced Target Detection,” Proc. SPIE on
Algorithms for Synthetic Aperture Radar Imagery II, Vol. 2487, pp. 201-210, 1995.

. D. Casasent, and J. S. Smokelin, ”Real, Imaginary, and Clutter Gabor Filter Fusion for Detection with

Reduced False Alarms,” Optical Engineering, Vol. 33, pp. 2255-2263, 1994.

. G. Tarr, ”Multi-Layered Feedforward Neural Networks for Image Segmentation,” Ph.D. Dissertation, Awr

Force Institute of Technology, OH, 1991.
D. E. Rumelhart, and J. L. McClelland, Parallel Distributed Processing: Ezplorations in the Microstructure
of Cognition, vol. 1, Cambridge, MA:MIT Press, 1986.

. S. Rogers et al., ”Neural Networks for Automatic Target Recognition,” Neural Networks, Vol. 8, pp. 1153-

1184, 1995.

. S. P. Luttrell, ” A Hierarchical Network for Clutter and Texture Modelling,” Proc. SPIE on Adaptive Signal

Processing, pp. 518-528, 1991.

J. Chernick et al., ”Background Characterization Techniques for Target Detection Using Scene Metrics and
Pattern Recognition,” Optical Engineering, Vol. 30, pp. 254-258, 1991.

T. Martinez, and K. Schulten, ” Topology Representing Networks,” Neural Networks, Vol. 7, pp. 507-522,
1994.

R. Kothari, and K. Agyepong, “On Lateral Connections in Feed-Forward Neural Networks,” Proc. IEEE
International Conference on Neural Networks, pp. 13-18, 1996.

K. Agyepong, and R. Kothari, “Controlling Hidden Layer Capacity through Lateral Connections,” Neural
Computation, Vol. 9, No. 6, pp. 1381-1402, 1997.

R. Kothari, and K. Agyepong, “Self-Regulation of Model Order in Feed-Forward Neural Networks,” Proc.
IEFEE International Conference on Neural Networks, pp. 1966-1971, 1997.

M. J. D. Powell, “Radial Basis Functions for Multivariable Interpolation: A Review,” In J. C. Mason, and
M. J. Cox (Eds.), Algorithms for Approzimation, pp. 143-167, Oxford: Clarendon Press, 1987.

J. Moody, and C. Darken, “Fast Learning in Networks of Locally Tuned Processing Units,” Neural Com-
putation, Vol. 1, pp. 281-294, 1989.

M. J. L. Orr, ”Regularisation in the Selection of Radial Basis Function Centres,” Neural Computation, Vol.
7, pp. 606-623, 1995.

MSTAR  (Public)  Targets and  Clutter ~CD-ROMS.  For  further  information  see
http://www.mbvlab.wpafb.af.mil/public/ MBVDATA.



